Set Theory Symbols and Definitions

Symbol	Name	Definition	Example
$\}$	Set	A collection of elements	$A=\{2,7,8,9,15,23,35\}$
\begin{array}{lll}\hline A \cap B & \text { Intersection } & \text { Objects that belong to set } A \text { and set } B\end{array}
$$ \begin{array}{l}If set A=\{1,2,3\} \& set B=\{2,3,4\}

then A \cap B=\{2,3\}\end{array}\right\}\)

Set Theory Symbols and Definitions

Symbol	Name	Definition	Example
A^{c} or A^{\prime}	Complement	All objects that do not belong to set A.	
$A-B$	Relative Complement	Elements of set A but not set B	If set $A=\{a, b, c\}$ \& set $B=\{c, d, e\}$ then $A-B=\{a, b\}$
A Δ B	Symmetric Difference	Elements that belong to set A or set B but not to their intersection.	$\begin{aligned} & \text { If set } A=\{a, b, c\} \& \text { set } B=\{c, d, e\} \\ & \text { then } A \Delta B=\{a, b, d, e\} \end{aligned}$
$a \in \mathrm{~A}$	Element of	Membership of set A.	$\begin{aligned} & \text { If set } \mathrm{A}=\{\mathrm{a}, \mathrm{~b}, \mathrm{e}, \mathrm{f}, \mathrm{~g}, \mathrm{~h}\} \\ & \text { then } a \in \mathrm{~A} \end{aligned}$
$x \notin \mathrm{~A}$	Not an Element of	Not a member of set A .	If set $A=\{a, b, e, f, g, h\}$ then $x \notin \mathrm{~A}$
\varnothing	Null or Empty Set	The set does not contain any elements.	$\begin{aligned} & \text { if set } A=\{ \} \\ & \text { then } A=\varnothing \end{aligned}$
U	Universal Set	The set of all possible elements.	$\begin{aligned} & \text { If set } A=\{1,2,3\}, \quad \text { set } B=\{4,5,6\} \\ & \& \text { set } C=\{7,8\} \\ & \text { then } U=\{1,2,3,4,5,6,7,8\} \end{aligned}$
N_{0}	Set of Natural Numbers with Zero	$\mathbb{N}_{0}=\{0,1,2,3,4,5,6,7,8, \ldots\}$	$0 \in \mathbb{N}_{0}$
\mathbb{N}_{1}	Set of Natural Numbers without Zero	$\mathbb{N}_{1}=\{1,2,3,4,5,6,7,8, \ldots\}$	$7 \in \mathbb{N}_{1}$
\mathbb{Z}	Set of Integer Numbers	$\mathbb{Z}=\{\ldots-4,-3,-2,-1,0,1,2,3,4, \ldots\}$	$-2 \in \mathbb{Z}$
Q	Set of Rational Numbers	A rational number is a number that can be expressed as a fraction where p and q are integers and q does not equal zero.	$\frac{2}{3} \in \mathbb{Q}$
\mathbb{R}	Set of Real Numbers	$\mathbb{R}=\{x \mid-\infty<x<\infty\}$	$4.862 \in \mathbb{R}$
\mathbb{C}	Set of Complex Numbers	$\mathbb{C}=\{\mathrm{z} \mid \mathrm{z}=\mathrm{a}+\mathrm{bi},-\infty<a<\infty,-\infty<b<\infty\}$	$5+3 i \in \mathbb{C}$

