Set Theory Symbols and Definitions

Symbol	Name	Definition	Example
{}	Set	A collection of elements	A = {2,7,8,9,15,23,35}
$A \cap B$	Intersection	Objects that belong to set A and set B	If set A = $\{1,2,3\}$ & set B = $\{2,3,4\}$ then A \cap B = $\{2,3\}$
$A \cup B$	Union	Objects that belong to set A or set B	If set A = $\{1,2,3\}$ & set B = $\{4,5,6\}$ then A \cup B = $\{1,2,3,4,5,6\}$
$A\subseteq B$	Subset	Set A is a subset of set B if and only if every element of set A is in set B.	If set A = $\{a,b,c\}$ & set B = $\{a,b,c\}$ then A \subseteq B.
$A \subset B$	Proper Subset	Set A is a proper subset of set B if and only if every element in set A is also in set B, and there exists at least one element in set B that is not in set A.	If set $A = \{a,b\}$ & set $B = \{a,b,c,d\}$ then $A \subset B$.
$A \not\subset B$	Not Subset	Subset A does not have any matching elements of set B.	If set A = $\{a,b\}$ & set B = $\{c,d,e,f\}$ then $A \not\subset B$.
$A \supseteq B$	Superset	Set A is a superset of set B if set A contains all of the elements of set B.	If set A = $\{d,e,f\}$ & set B = $\{d,e,f\}$ then $A \supseteq B$.
$A\supset B$	Proper Superset	Set A is a proper superset of set B if set A contains all of the elements of set B, and there exists at least one element in set A that is not in set B.	If set A = $\{4,5,6\}$ & set B = $\{5,6\}$ then A \supset B.
A ⊅ B	Not Superset	Set A is not a superset of set B if set A does not contains all of the elements of set B.	If set A = $\{a,f,c,d\}$ & set B = $\{b,f\}$ then $A \not\supset B$.
$\mathcal{P}(A)$	Power Set	Power set is the set of all subsets of A, including the empty set and set A itself.	If set A = $\{1,2,3\}$ then $\mathcal{P}(A) = \{\}, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{1,2,3\}$
A = B	Equality	Set A & set B contain the same elements.	If set A = $\{2,3,4\}$ & set B = $\{2,3,4\}$ then A = B.

Set Theory Symbols and Definitions

Symbol	Name	Definition	Example
A^{c} or A'	Complement	All objects that do not belong to set A.	
A - B	Relative Complement	Elements of set A but not set B	If set A = $\{a,b,c\}$ & set B = $\{c,d,e\}$ then A - B = $\{a,b\}$
ΑΔΒ	Symmetric Difference	Elements that belong to set A or set B but not to their intersection.	If set A = $\{a,b,c\}$ & set B = $\{c,d,e\}$ then $A \triangle B = \{a,b,d,e\}$
a∈A	Element of	Membership of set A.	If set A = $\{a,b,e,f,g,h\}$ then $a \in A$
x∉A	Not an Element of	Not a member of set A.	If set A = $\{a,b,e,f,g,h\}$ then $x \notin A$
Ø	Null or Empty Set	The set does not contain any elements.	if set $A = \{ \}$ then $A = \emptyset$
U	Universal Set	The set of all possible elements.	If set A = $\{1,2,3\}$, set B = $\{4,5,6\}$ & set C = $\{7,8\}$ then U = $\{1,2,3,4,5,6,7,8\}$
\mathbb{N}_{0}	Set of Natural Numbers with Zero	$\mathbb{N}_0 = \{0,1,2,3,4,5,6,7,8,\}$	$0\in \mathbb{N}_0$
\mathbb{N}_1	Set of Natural Numbers without Zero	$\mathbb{N}_1 = \{1,2,3,4,5,6,7,8,\}$	$7\in\mathbb{N}_1$
\mathbb{Z}	Set of Integer Numbers	ℤ = {4,-3,-2,-1,0,1,2,3,4,}	-2 ∈ ℤ
Q	Set of Rational Numbers	A rational number is a number that can be expressed as a fraction where p and q are integers and q does not equal zero.	$\frac{2}{3}\in\mathbb{Q}$
\mathbb{R}	Set of Real Numbers	$\mathbb{R} = \{x \mid -\infty < x < \infty\}$	4.862 ∈ ℝ
C	Set of Complex Numbers	$\mathbb{C} = \{ z \mid z = a + bi, -\infty < a < \infty, -\infty < b < \infty \}$	5 + 3i ∈ ℂ

